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Isotropic phases of self-assembled amphiphilic
aggregates

By M. E. CaTEs
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, U.K.

An account is given of recent theoretical and experimental progress in understanding
isotropic phases of amphiphilic molecules in solution. The viewpoint is mainly that
of equilibrium statistical mechanics, but with some discussion of dynamical features,
such as viscoelasticity. We start by discussing spherical and anisometric micelles,
especially rigid rod micelles, and their interactions with each other and with
perturbing fields. Flexible worm-like micelles are next considered, emphasising their
length distribution and its kinetics; their linear (and, briefly, nonlinear) visco-
elasticity; tracer diffusion, including anomalous diffusion; and the role of
equilibrium crosslinks. The aggregation of amphiphiles into bilayers is then discussed.
The elastic curvature energy of bilayers is used to account for the stability of the
sponge phase (L;). Scaling laws for dilution of this phase are given, and its unusual
symmetry pointed out. The role of edge- and line-defects in the sponge phase is
outlined, along with preliminary ideas concerning its dynamical properties. Finally,
the possible stability of other isotropic bilayer phases, containing equilibrium
vesicles and/or onion-like structures, is briefly examined.

1. Introduction

This paper reviews recent work on the various isotropic phases of amphiphilic
molecules, such as detergents, in solution. The word ‘phase’ here is used loosely since
(with one remarkable exception) all the isotropic phases considered here have the
same symmetry as a simple liquid, and can in principle run smoothly into one
another without any form of phase transition. Throughout, the emphasis is on simple
models, in which the detailed molecular specification of the amphiphile(s), solvent,
and their mutual interactions, are encapsulated in a small number of phenom-
enological parameters. By thus limiting our ambitions, more can be achieved in
terms of a general description of self-assembly and its consequences, than if we
attempt to base our models directly on fundamental molecular chemistry. In fact,
the models described may be relevant not only to conventional surfactant mol-
ecules, but also more complex materials including dyes (Attwood et al. 1990),
metallic complexes (Terech et al. 1992), phospholipids (Leibler 1989), Lecithins
(Schurtenberger et al. 1989, 1990) and liquid sulphur (Cates 1987a).

2. Principles of self-assembly: spherical micelles

Amphiphilic molecules, such as soaps, can in solution self-assemble into a variety
of aggregated structures. The aggregation is usually fully reversible: this allows one
to apply the laws of statistical mechanics. A typical amphiphile consists of a polar
head group attached covalently to a hydrocarbon tail. In aqueous solution, these
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molecules will aggregate spontaneously so as to avoid hydrocarbon/water contacts.
The usual structure is a small spherical micelle (or, in an organic solvent, a reverse
micelle) of 20-50 molecules.

The basic compromise the system has to make is between translational entropy,
which favours the maximum number of small objects, and the (free) energy of
packing (Israelachvili et al. 1976). We choose to work at fixed volume, in which case
the natural thermodynamic potentials are F (Helmholtz free energy) and
@ = F—uN. Is it convenient to introduce units of energy such that ky 7= 1. For a
dilute solution of micelles, the thermodynamic potential @ per unit volume as a
function of the concentrations ¢, of n-mers, is then

o= Cn (lncn+f(n)_/"/n)7 (1)
n=1

where f(n) is the local packing energy of an n-mer whose centre of mass position is
specified. The cInc terms are the entropy of translation of the aggregates; a
phenomenological microscopic length, of order the amphiphile size, has been set
equal to unity. To find the equilibrium size distribution, the potential @ must be
minimized at fixed p with respect to all the concentrations c,,. This gives a standard
result (recalling k7' = 1): . = o U, @)

where p is determined, for a closed system, from the constraint that

o0
2 ne, = @, 3)
n=1

where ¢ (in suitable units) is the volume fraction of amyhiphile.

What happens, as u is increased, depends on the shape of f(n). For spherical
micelles, this function typically has negative curvature at small #, a minimum at
some n = n,, and then rises steeply at large n (reflecting the fact that a hole at the
centre is very unfavourable). If so, a fairly sudden proliferation of micelles of size
Neme Occurs near a well defined chemical potential u = g, where cme denotes
critical micellization concentration. The total amount of material contained in
micelles rapidly becomes very large as p passes g.,.. Conversely, the chemical
potential u becomes almost independent of the concentration for ¢ > ¢.,, .. Note that
the micelles formed are always somewhat smaller than the optimal packing size (n,,).
This reflects the compromise between packing energy and translational entropy. If,
in contrast to our assumption, f(n) does not have negative curvature at small n, the
mean micellar size instead evolves smoothly away from zero as ¢ is increased ; there
is no sudden onset. This scenario appears to be common for (reverse) micelles in
organic solvents (see, for example, Mittal & Bothorel 1986).

Phases of spherical micelles are of some interest, especially in the 30-70 % volume
fraction range where they share some of the static and dynamical properties of
interacting colloidal suspensions (Kotcharlyk et al. 1984). However, since the basic
micellar shape is roughly constant, there is not much direct influence of self-assembly
on solution properties.

3. Anisometric micelles
(@) Rods and discs

In addition to the spherical case, rod-like and disc-like micelles can both be
envisaged. For a single species of amphiphile, the linear size of the aggregate in its
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Isotropic phases of amphiphilic aggregates 341

shortest direction is basically controlled by the length of the molecule. Subject to
this, spheres, cylinders and sheets have decreasing surface to volume ratio, and
therefore one expects a progression through this sequence as the ratio of head group
size to that of the tail is decreased (Israelachvili et al. 1976). The same arguments
can be used to explain the role of cosurfactants and mixtures of surfactants.
For the case of rod-like assemblies, the packing energy f(n) takes the form (for n
large)
fn)=An+E, (4)
where the first term arises from the cylindrical body of the micelle, and the second
is the excess packing free energy of two end-caps. For surfactant assemblies, this end-
cap energy is typically in the range 5-25ky 7" (Cates & Candau 1990). If we assume
that micelles are dilute enough not to interact (via steric, van der Waals, or Coulomb
forces) we can continue to use (1) but with this new form of f(n). The result is then

¢, =e Ben/m, (5)

where 7 = (4 — )™ is the mean aggregation number. Solving for x then shows that
7 depends on volume fraction ¢ according to (Mukerjee 1972)

7~ eP2 i, (6)

The rod size thus evolves smoothly with volume fraction. This result has been
confirmed experimentally for large aggregates in dilute conditions (Young et al. 1978;
Missel et al. 1983), though ignores any correction to (4) arising at small n, and thus
does not describe systems in which rods form with an aspect ratio of, say, two or
three (which may still be governed by a ¢cme type evolution).

The case of disc-shaped micelles is completely different. For a flat disc, the
packing free energy becomes f(n) = A’n+Bn* where the second term is a perimeter
contribution. Repeating the previous argument gives ¢,, = e~ B"~¢=42" Tn this case,
negligible aggregation occurs so long as 4 < A’ (since ¢,, is then maximum for » = 1).
However, for 4 > 4, ¢, is unbounded at large n. Therefore y = A’ formally marks the
onset of an abrupt transition from monomers to a phase of infinite discs, or more
realistically a smectic liquid crystalline phase (Israelachvili et al. 1976). However, for
disc-like aggregates of moderate size, the shape can be more like an oblate ellipsoid,
to which this argument does not apply. Such micelles are indeed found, and show a
variety of interesting phases, including (at high concentrations) exotic phases of
columnar, discotic, and even smectic order (see, for example, Boden et al. 1987).

(b) Interactions among rods

Returning now to rod-like micelles, we note that long rods will tend to overlap
even at quite low total volume fractions of amphiphile. By overlap we mean that the
sphere swept out by one rod typically contains (parts of) several other rods: this
defines the ‘semidilute’ régime, ¢ > ¢* (Doi & Edwards 1986). The effect of
interactions on the size distribution for rods calculated previously is somewhat
delicate. But any interaction which depends only on the total amount of material, ¢,
can be shown to be irrelevant in determining the size distribution. Thus the
calculation leading to (5) and (6) is not necessarily invalidated simply because rods
overlap in space.

In practice, though, there are two important types of interaction that do not
depend only on the total amount of material present. The first is the orientational
interaction which causes nematic ordering at high concentrations (de Gennes 1974).

Phil. Trans. R. Soc. Lond. A (1993)
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Near any nematic transition, the size distribution of micelles may be strongly coupled
to the state of local order (McMullen et al. 1985; Herzfeld & Taylor 1988). However,
for long uncharged rods, there is in principle a large concentration range between
the onset of rod overlap (¢ = ¢*) and the onset of strong nematic interactions at
¢ = ¢p** = ¢*L, where L is the aspect ratio of a typical rod (Doi & Edwards 1986).

The second interaction of this type is the Coulomb force, which is important in
ionic surfactant systems at low ionic strengths. The effect of this force on the size
distribution has been studied for the case of no added salt (Safran et al. 1990;
MacKintosh et al. 1990; see also Odijk 1989). Below the overlap threshold, micellar
growth is suppressed, with a slower increase of mean micelle size with ¢ than given
by (6), and a narrower size distribution than predicted by (5). Close to ¢*, a collective
screening of the Coulomb force sets in, and the mean rod length increases very
rapidly, approaching from below an asymptotic behaviour governed by (6) and (5)
in the semidilute régime. This is consistent with some evidence from dynamical
studies (see, for example, Wunderlich et al. 1987). In practice, however, the
behaviour near ¢* may be yet more complex, due to a strong coupling between the
relative orientations of neighbouring micelles and their centre of mass positions
(Canessa et al. 1991). The characterisation and modelling of charged rod-like micelles
at or above the overlap threshold remains an important challenge for future research.

(c) Rod micelles under fields and flow

In this section we ignore the complications of rod-rod interactions and discuss
some unusual features that arise from self-assembly in systems subjected to an
external field. This will generally tend to align the micellar axes along the direction
of the field, which reduces the entropy of rotation of any given rod. The rotational
entropy, like the translational kind, is involved in a competition with the local
packing preference of amphiphiles. The imposition of a field interferes with this
balance and will tend to favour longer rods: this is the phenomenon of alignment
induced growth.

The simple case of non-interacting rod-like micelles in an external electric or
magnetic field can be solved using the methods of §3a. For micelles without
permanent dipole moments (the usual case) we can write in place of (2)

c(n, o) = exp [ — (B —pun— &*na®)], (7)

where ¢(n, cos 0) is the concentration of rods of ‘length’ n at an angle 6 to the applied
field. The end-cap energy is again denoted £ whereas & is a field strength measured
in reduced units which incorporate various microscopic factors of polarizability, ete.
From (7) one can calculate any desired thermodynamic properties of a solution of
non-interacting rod-like micelles in a field (Drye & Cates 1993).

For the case of monodisperse, unbreakable rod-like particles, a similar thermo-
dynamic argument can be used to calculate the response of rods to an applied flow
field (Doi & Edwards 1986). This works only for the case of potential flows (such as
elongational flow); shear flow is excluded. The case of self-assembling rods under
flows is more complex, since in principle there is not only a rotational torque from
the flow but also a coupling between the flow of the micelles and the kinetics of their
aggregation and breakdown. None the less, an effective-field model has been
proposed for the self-assembled case in both elongation (Wang et al. 1990) and shear
(Wang 1990, 1991). This gives quite reasonable predictions: for example in
elongation, some increase in micellar length at modest flow rates is followed by an

Phil. Trans. R. Soc. Lond. A (1993)
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Isotropic phases of amphiphilic aggregates 343

eventual decrease as rods are torn apart by the flow. However, there are fundamental
difficulties with this approach, which involves implicit (and arguably unrealistic)
assumptions concerning the dependence of the fusion rates for rods on their angle to
the flow direction.

An alternative approach is based on the direct analysis of rate equations for
breakdown and (collinear) fusion of micelles. The main effect of flow is now to
enhance reactions by increasing the number of parallel rods that can fuse. For
elongational flow, the analysis can be carried out in detail if one assumes that
micellar reactions are frequent on the timescale of rotation of an average micelle
(Cates & Turner 1990). Some asymptotic results for shear flows, and for the opposite
limit of slow reactions, have also been obtained (Turner & Cates 1992a). In all cases,
substantial micellar growth is predicted at high flow rates; for elongational flow the
behaviour can mimic a phase transition, at a critical flow rate, to rods of virtually
infinite length.

So far, neither theory has been very successful in explaining shear-flow experiments
on stiff rod-like micelles. In reality, many systems show (in flow birefringence and
stress measurements) a fraction of strongly aligned material at much lower shear
rates than predicted by theory (Rehage et al. 1986; Wunderlich et al. 1987). The
resulting shear-induced state can take seconds or even minutes to build up after flow
is started (Hofmann ef al. 1991). In apparent contradiction, neutron scattering data
has been used to argue against any form of alignment-induced growth (Cummins et
al. 1987, 1992). To explain these strange effects, a more detailed account of
(Coulombic) micellar interactions, perhaps in the framework of a kinetic coagulation
model (Bruinsma et al. 1992), will be needed.

4. Worm-like micelles

In many surfactant systems, very long, flexible one dimensional micelles are
formed, for example by adding excess salt to a system of short rodlike micelles (Porte
and Appell 1981, Candau et al. 1985; Ikeda et al. 1980; Hoffmann et al. 1983). The salt
reduces the effective head group size (by screening of Coulomb forces), destabilizing
the hemispherical end caps relative to the cylindrical body of the micelle, and so
causing an increase in length. (At the same time, the screening leads to a much
reduced micellar stiffness (Odijk 1979).) The overlap threshold can then be very low
(a few percent). The resulting phase of entangled micelles is viscoelastic and strongly
resembles a polymer solution. This suggests the application of semidilute polymer
solution theory (de Gennes 1979), which predicts certain scaling laws. For example,
the osmotic pressure II and high-frequency shear modulus (plateau modulus) G,
should each vary approximately as ¢?2°. These laws (and similar ones concerning
light scattering) are not sensitive to the individual lengths of the polymers, but only
to the total volume fraction of chains present. In practice such laws are obeyed fairly
well by viscoelastic surfactant phases (see Cates & Candau 1990), confirming the
presence of entangled polymerlike objects.

(@) Micellar length distribution

The molecular weight distribution for semidilute self-assembling polymers can be
calculated in a mean-field (Flory—Huggins) approach (Scott 1965). We may write

D= § c(n) (Inc(n) + B — un) + AD(P), (8)

n=0

Phil. Trans. R. Soc. Lond. A (1993)
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where £ is again the (free) energy of two end-caps. Terms linear in » have been
incorporated into x. The last term in (8) represents interactions; it is a feature of the
mean-field treatment that this depends only on the total volume fraction, ¢. The
minimization to find the size distribution c¢(n) proceeds exactly as in §3a, with the
same results, (5) and (6). In principle, these are now liable to corrections from three
sources. First, for solutions of ionic micelles at low ambient salinity, the micelles
themselves contribute to the ionic strength so that £ in (8) becomes ¢-dependent
(Mackintosh et al. 1990; Porte 1984 ; Odijk 1989). This effect leads to an enhanced
concentration dependence of the mean worm-length 7. The mean-field treatment
neglects a second ¢-dependent correction to £, from excluded volume correlations
(Cates 1988). This too leads to a slight shift in the power-law exponent (0.5 - 0.6) for
the dependence of 7 on ¢ in (6). Finally, we have ignored the presence of closed rings,
which should have only weak effects (Cates 1988; Petscheck et al. 1986).

(b) Dynamics of micellar breakdown

The main differences between worm-like micelles and conventional polymers is in
the reversibility of the aggregation process. In many systems, reversible breakdown
and fusion occur on timescales comparable with, or more rapid than, those associated
with chain diffusion. Hence the dynamics (self-diffusion and viscoelasticity) are
strongly sensitive to the micellar kinetics. These can also be probed directly using the
T-jump technique (Lang & Zana 1987). In this method, a small change in
temperature is made (rapidly) by discharging a capacitor through the sample. The
light scattering signal is then monitored as it relaxes to a new equilibrium value.

Three different model schemes for the kinetics of micellar fusion and breakdown
have been analysed (Cates 1987b; Turner & Cates 1990, 1991, 1982b; Turner et al.
1993); these are reversible scission, end-interchange and bond-interchange (figure 1).
For each scheme, there is a characteristic time 7,,,, for changes in micellar size. The
case of a T-jump measurement turns out to be unexpectedly simple (Turner & Cates
1990). For reversible scission, the scattering signal is predicted to decay mono-
exponentially (with relaxation time 37,,.,,); this behaviour has indeed been observed
in the system CTAB/KBr (Candau et al. 1990). For the other two reaction schemes,
T-jump corresponds to a zero mode (not decay of the signal), which can be traced to
the fact that these schemes preserves the overall number of chains. This is consistent
with observations on CTAC/NaSal/NaCl (Kern et al. 1991), for which the end-
interchange mechanism has been suggested.

(¢) Viscoelastic spectra

The most spectacular property of entangled micellar solutions is their visco-
elasticity. Viscoelastic surfactant phases are used in a number of domestic and
industrial applications, where their unique rheology, as well as their detergent
activity, are exploited. The relaxation time for stress response to an applied shear is
typically about 1 s.

Of interest is the function u(t), the fraction of shear stress remaining at time ¢ after
a small step strain is made. For unbreakable polymers, this can be predicted using
the reptation model. In this model, each chain is viewed as trapped in a tube,
representing entanglements with its neighbours (de Gennes 1979). The chain can
diffuse only along its own length (reptate); its escape from the tube is characterized
by a time 7., which varies roughly as ¢*z®. (The exponent for ¢ is slightly model
dependent.) If a step strain is applied at time zero, the chain creeps out of its original

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 1. (a) Reversible scission, (b) end-interchange and (¢) bond-interchange.

tube gradually into a new environment, creating new tube as it goes. The new tube
is in equilibrium in the strained environment, and therefore carries no stress. In this
model, therefore u(t) is given by the fraction of the original (¢ = 0) tube through which
neither end of the chain has passed before time ¢. This can be calculated by casting
the problem as a one-dimensional stochastic process (see Doi & Edwards 1986).

The resulting stress relaxation function u,(¢) for unbreakable polymers of length
n is close to single exponential. This, along with many other predictions of the
reptation model, has been confirmed in experiments on conventional polymers.
Within the reptation picture it is straightforward to include polydispersity; for an
exponential distribution of chain lengths (as predicted by (5)) the result is the weight
average:

p(t) & ¢S o(n) g, (t) X exp [ — (t/Tpep)i] 9)

where from now on 7,,, denotes 7,.,(7). This broad relaxation spectrum seems to be
approached in some micellar systems, such as CPyCl/NaSal with low added salt
(Rehage & Hoffmann 1988, 1991). Equation (9) assumes that the micellar kinetics are
so slow as to not influence the reptation process itself, in which case polydispersity
is the sole effect of self-assembly.

However, there is a (much larger) class of micellar systems which show ex-
perimentally, instead of (9), behaviour approaching a simple Maxwell fluid (see, for
example, Rehage & Hoffmann 1988, 1991; Shikata et al. 1987, 1988a, b),

pu(t) ~ et (10)

This can be explained by a model in which the reptation process is coupled to the
kinetics of micellar breakdown. Chains move by reptation but are also subject to
intermittent changes in length, brought about by micellar reactions. It turns out
that the coupled reptation—reaction model can again be cast as a one-dimensional
stochastic process, from which u(t) can be efficiently computed (Cates 19876 ; Turner
& Cates 1991).

For negligibly slow micellar kinetics (7ypeay > 7Tpep), the result (9) is recovered,
whereas in the opposite limit of rapid reactions, near-Maxwell behaviour, (10), is
indeed found. In this limit the Maxwell time 7 obeys asymptotically 7 ~ (7,,, Toreak)?
for both reversible scission and end-interchange, whereas for bond interchange,
T~ T%ep Threar (Turner & Cates 1992b). The approach to a single exponential stress
decay can be explained by noting that the relaxation time 7 for stress relaxation

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 2. Cole~Cole plot of complex modulus for a CTAB/KBr system (Turner & Cates 1991;
Kern et al. 1991). Crosses: theory, circles: experiment. { = 7., /7 is fitted.

remains much greater than the breaking time 7., On a time scale of a few 7 ,¢q,
any given tube segment loses all memory of its initial position relative to the ends of
the chain which occupies it. For later times, all tube segments are equivalent, and
relax with an equal rate. The resulting relaxation is thus nearly monoexponential,
but with departures at short times (¢ < Ty eqai)-

Within the model, a quantitative analysis of these departures may be made. They
are most visible when the complex elastic modulus G*(w) is plotted in the Cole—Cole
representation, that is, the imaginary part of G* (loss modulus) against the real part
(storage modulus) (Doi & Edwards 1986). Here G*(w) is related to the fourier
transform of G(t) = G,u(t), where G, is the high-frequency ‘plateau’ modulus of
the system, whose scalings was discussed earlier. By comparing the departures
seen experimentally with those calculated in the model, an estimate of 7y .4
can be deduced from the viscoelastic spectrum (see figure 2). This has been done
for a CTAB/KBr system (Turner & Cates 1991; Kern et al. 1992); the result for
Tpreax = 0.1 8 18 very close to that determined independently by T-jump measure-
ments (Candau et al. 1990). This is strong evidence that the model is correct for the
system studied.

Another interesting estimate can be extracted from the viscoelastic spectrum : that
of the mean micellar length. The procedure here is more complicated but again
involves analysing the shape of the Cole—Cole plot (Granek & Cates 1992). The
resulting length estimates are typically in the micron range for CTAB/KBr,
CTAC/NaSal/NaCl, and CPyCl/NaSal systems (Kern et al. 1991), but for the most
extreme cases (e.g. 15 mm CPyCl+12.5 mm NaSal (Hoffmann & Rehage 1988))
estimated mean contour lengths of more than 0.1 mm are obtained.

We conclude this section with a brief discussion of nonlinear viscoelastic
phenomena. Although they approach a simple Maxwell relaxation in linear response
to applied shear, the behaviour of viscoelastic surfactant solutions under high shear
conditions is far from simple. None the less, a nonlinear constitutive equation has
been proposed (Cates 1990), and solved for the case of steady shear (Spenley et al.
1993). The equation exhibits a flow instability, and (for 7., < 7) predicts a
constant shear stress of o* = 0.67G, over a wide range of shear rates. The theoretical
shear stress curve is compared with that found experimentally by Rehage &
Hoffmann (1991) for a CPyCl/NaSal system in figure 3; there are no adjustable
parameters. Over the same range of shear rates, the first normal stress difference is
predicted to increase (roughly linearly) towards a very large value; this is also
observed. These are obviously encouraging results. Experimentally, a wide range of

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 3. Reduced shear stress o/, against reduced shear rate y7 for a CPyCl/NaSal system
(Spenley et al. 1993; Rehage & Hoffmann 1991). Solid line, theory; points, experiment.

unusual stress effects have also been seen in non-steady flows, such as startup
(Shikata et al. 1988b; Rehage & Hoffmann 1988, 1991), which remain to be analysed
theoretically.

(d) Self-diffusion: Levy-flight anomaly

The reptation-reaction model can be used to calculate the diffusivity D of
individual amphiphiles (Cates 19875); the prediction is D ~ ¢, with y in the range
1.3-1.7, depending on the kinetic scheme. The exponent is sensitive to the precise
dependence of @ on ¢ (which may depart from theory due to Coulomb effects) and a
wider range of values have been obtained in experiment (Ott ef al. 1990a). These do
come close to the predicted value for ionic surfactants at moderately high ambient
salt, as well as in an uncharged (lecithin in oil) system (Ott et al. 1990b).

The calculation of D (Cates 1987 b) assumed that the diffusion is a gaussian process.
However, the motion of a given tracer is made up of a sequence of intervals spent on
chains of different lengths. There is a disproportionate contribution to diffusion from
rare visits to very short chains, which move very quickly. This can lead to a
breakdown in gaussian statistics, if the typical motion is dominated by these rare
events. The motion is then described instead by a Levy-flight: a sequence of random
steps whose length distribution has no second moment (Bouchaud & Georges 1990).

This anomalous behaviour has indeed been observed in fluorescence recovery after
photobleaching (FRAP) measurements (Bouchaud et al. 1991). The anomaly shows up
as an unexpected power law dependence of the relaxation time on wavevector:
Terap(k) ~ k™™, with m around 1.6-1.8, rather than the usual m = 2. The facts can be
accounted for by assuming a slightly stronger dependence of D,,, on n (over some
range of chain lengths) than the usual reptation prediction. Such a correction has
previously been suggested in the context of unbreakable polymers (see, for example,
Deutsch 1987).

(e) Role of crosslinks

So far we have neglected any possibility that the micelles form crosslinks with one
another to form a real network (rather than merely a network of entanglements).
Whether such crosslinks actually are important, depends on their relative packing
energy compared with that of end caps. In ionic surfactant solutions, it is known that
the end-cap energy, and hence the mean chain length, increases with salinity. Since
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crosslinks and end caps have the opposite local curvature, one may expect the
relative stability of crosslinks to increase under the same conditions, in which case
a crossover towards network behaviour is expected at high enough salt levels (Porte
et al. 1986).

Equilibrium crosslinks have two main consequences, one static and one dynamic.
In terms of static equilibria, the main effect is from three-fold junctions, which
become increasingly important as the concentration is decreased. Formation of such
a link increases the entropy of the system, by an amount that increases with the mesh
size (Drye & Cates 1992). Crosslink formation can ultimately defeat excluded volume
repulsions, leading to a phase-separation, in which the network avoids further
dilution by expelling solvent.

The effect of crosslinking on dynamics is also interesting. In the régime where
crosslinks are sparse compared with entanglements, it has been shown that the
previous reptation-reaction model can be applied, so long as the mean chain length
7 is replaced by a (smaller) effective value n*, which is the average strand length
between crosslinking points (Lequeux 1992). Hence crosslinks tend to decrease the
stress relaxation time of the system, in marked contrast to their effect on
conventional polymers. This calculation suggests a possible connection between
crosslink formation, and anomalously weak viscoelasticity. The latter is seen
experimentally in a number of systems at high salt (Khatory et al. 1993; Candau et
al. 1993). An extreme example is CPyClO,/NaClO,, which shows perfect polymer
scaling behaviour in static and dynamic light scattering (Appell & Porte 1990), and
yet is almost completely inviscid (Appell et al. 1992). The system also seems to be
close to a phase separation (G. Porte, personal communication), which could also be
a sign of crosslink formation (see above). It is possible that in this material nearly all
the entanglements have been replaced by equilibrium crosslinks. It has been argued
that such a network can flow easily by a continuous sliding of junction points (Appell
et al. 1992).

5. Bilayer-forming surfactants

We now turn to systems in which the locally stable structure is a fluid bilayer. This
can be arranged by tuning parameters, such as salinity, to reduce the relative size of
the surfactant head-group. The resulting bilayer can support elastic deformations
(curvature) and, in principle, two types of line-defect: ‘edges’ and ‘seams’. An edge
consists of a sharply curved region where one face of the bilayer folds over to join the
other; in a seam, three sections of bilayer meet along a line. (There is again strong
local curvature, but in the opposite direction.) For the moment, we rule out such
defects; their role is considered briefly in §5¢. Hence our bilayers must be closed (the
case of vesicles: see §5a below) or infinite, as in the dilute smectic (L,) phase. We
assume that the area per surfactant is constant, so that the film surface area is ¢/a,
where ¢ is the volume fraction and a the bilayer thickness. With these simplifications,
we are left to deal with a fundamental competition between the curvature energy of
bilayers (favouring flat films) and entropy (favouring random structures).

(a) Elastic free energy

Within the harmonic approximation, the packing energy of a bilayer is (Helfrich
1973)

E= f(2KH2+k'K) ds, (11)
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where H = }(1/R,+1/R,) is the mean curvature, and K = 1/R, R, is the gaussian
curvature. Here R, and R, are the two local principal curvature radii, assumed large
compared with @, whereas k and K are the mean and gaussian curvature rigidities.
Stability conditions (discussed below) require that « >0 and —2«x <&<0. An
interesting topological theorem (see David 1989) states that

jKdS = 4n(N,—N,), (12)

where N, is the number of disconnected pieces of a surface (or ‘components’) and N,
its number of ‘handles’. (For example a torus has one component and one handle.)

The rigidities « and & have units of energy. When « is comparable with the thermal
energy (kg7 =1, in our units), thermal undulations of the fluid bilayer become
significant. These lead to a thermally-induced ‘softening’ of the bilayer (Helfrich
1983; Peliti & Leibler 1986; Kleinert 1985; David & Guitter 1987). Within
perturbation theory, an effective rigidity «(£) can be calculated as

Kk(§) = k—(3/4m)log (§/a) (13)

with a similar logarithmic correction expected for £(§) (see David 1989).

The thermal softening causes a flat piece of bilayer to lose memory of its
orientation over a certain ‘persistence length’, § =~ aexp[4nk/3kyT] (de Gennes &
Taupin 1982). In typical surfactant bilayers, £, is around 100 nm. For some other
systems, such as cell-membrane phospholipids, « is larger and the persistence length
is macroscopic. Even in these systems, thermal undulations can play an important
role in the stability of the lamellar (L,) phase. The tendency of a bilayer to wander
in a direction normal to its plane leads to a confinement pressure or ‘Helfrich force’
(Helfrich 1978) which results from entropic collisions of one bilayer with its
neighbours. If the films are even moderately flexible, the repulsive force between
adjacent bilayers can overcome the van der Waals attraction between them. In
surfactant systems this permits the existence of very dilute smectic phases, typically
at volume fractions of 1-10% (see, for example, Roux & Safinya 1988; Bassereau et
al. 1987).

(b) The sponge phase

Some years ago, an ‘anomalous’ isotropic phase was found for bilayer-forming
surfactants in either water or oil (Laughlin 1978; Lang & Morgan 1980; Benton &
Miller 1983). This phase (also called L,) exhibits strong birefringence under gentle
shearing, suggesting very large aggregates. More recent work using conductivity and
other methods (Gazeau et al. 1989) has shown that the phase is actually bilayer
continuous. It must therefore contain a spongelike web of bilayer which spans the
entire sample (figure 4).

Two main theoretical arguments can be used to explain the stability of this phase.
Starting from a lamellar phase, one can first consider a dilution experiment, whereby
the mean layer spacing d ~ a/¢ is increased more and more. When d exceeds the
persistence length, £, the driving force for smectic order (local flatness of the
bilayers) is lost. Therefore the phase should melt into a more random, sponge-like
structure, with a characteristic length scale of order §,. This is the basic argument of
Cates et al. (1988), which was supported by a lattice model (see also Golubovic &
Lubensky 1989). This model predicts that under even stronger dilution the sponge
structure should break up into small aggregates, stabilized by translational entropy.
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Figure 4. The sponge phase (picture courtesy of G. Porte).

Porte et al. (1989) argued somewhat differently, picturing the sponge phase as a
molten analogue of the bicontinuous cubic phase. Again starting from a dilute
lamellar phase, they argued that by tuning & to favour handles (i.e. making it less
negative, see (12)), the sponge phase could be reached. In both pictures, the resulting
random surface has much more entropy than any ordered phase that would minimise
(11). This ordered structure is either lamellar or —if K is positive —a cubic phase.
(Note that if the bare gaussian rigidity is positive, (11) is unstable to a cubic minimal
surface phase with a very small lattice parameter, determined by anharmonic
corrections. But a larger-length-scale cubic could arise if K(£) is positive only at large
distances.)

The two viewpoints just described are probably both correct, since in many
materials the sponge phase can equally well be reached by either route (see Roux et
al. 1992). Thus the characteristic length scale (or ‘pore size’) in the sponge (which by
simple geometry varies as § ~ a/¢) is not necessarily close to the persistence length
., and indeed can be varied over a wide range, typically 10-200 nm (Porte et al.
1991).

(¢) Scaling laws for the sponge phase

The fundamental equation of bilayer elasticity, (11), has a remarkable scale-
invariant property. If a piece of surface is homogeneously enlarged by a scale factor
A, the energy is unchanged (the factors of A? in the radii of curvature, and the area
element, cancel each other out). Porte et al. (1989, 1991) emphasized the similarity
between the mathematical process of dilating the structure, and the physical one of
diluting the phase. If we compare a given sponge phase, and one in which all length
scales are increased by A, the Helmholtz free energy of the enlarged system is
unaltered; hence the free energy density follows the law f—fA™3. This cannot be
tested directly since it compares two systems with identical elastic constants but
different bilayer thicknesses (@ — Aa). However, if we make an ansatz that the free
energy (for a fixed area) does not depend on a, then the mapping between a given
volume of the initial, and of the final, state can be achieved instead by reducing the
concentration of bilayer: ¢ - ¢@/A. We thus obtain a scaling law, foc ¢3.

This leads to a prediction for the osmotic compressibility, I(0) ~ ¢~1. This is quite
well-obeyed, though careful measurements expose a clear deviation (Roux et al. 1990,
1992; Porte et al. 1991). This can be accounted for, by adopting the modified formula

f=¢’[4+Blogg], (14)
Phil. Trans. R. Soc. Lond. A (1993)
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Figure 5. Osmotic compressibility 1(0) plotted as 1/(41(0)) against log ¢, to reveal logarithmic
corrections from undulation entropy (from Roux et al. 1990).

with 4, B constants. This functional form is in fact the one predicted theoretically
by the lattice model mentioned earlier, if thermal undulations are treated
perturbatively (asin (13)). The logarithmic corrections arise because the ansatz made
above, that the bilayer free energy per unit area is independent of thickness @, is not
quite correct. Although true of the elastic energy (11), the ansatz is violated by
the entropy of undulations (Roux et al. 1990). The observation of these delicate
corrections (figure 5) is very strong evidence for the correctness of the underlying
elastic model as embodied in (11). Scaling laws for various other properties (such as
the shape of the scattering function /(¢), and various dynamical measurements) have
also been confirmed experimentally, though (strangely) the logarithmic corrections
are much more prominent in scaling laws for static properties than in those for
dynamical relaxation times (Porte et al. 1991).

(d) The sponge phase: a hidden symmetry

The presence in the sponge phase of a continuous two-dimensional film of bilayer
has a peculiar consequence. Any such film has the property of partitioning three-
dimensional space into exactly two subvolumes. To identify these, we start
arbitrarily at some point in space and assign this point to be ‘inside’ the surface (I).
Any point that can be reached from this one without crossing the surface, or by
crossing it an even number of times, is also I, whereas any point which is reached by
crossing the surface an odd number of times is ‘outside’ (O). This partitioning is
unique, up to a single global interchange of I with O; it applies even if the surface
has many components.

We can now distinguish two different types of sponge phase: one in which the two
subvolumes are statistically equivalent (the ratio of I to O is 1:1) and one in which
they differ. The first, which we have implicitly been discussing so far, is called the
symmetric sponge phase, the second is the asymmetric sponge. This latter can be
changed continuously into (say) a dilute phase of vesicles by smoothly varying the
I/0 ratio until it is very small. Therefore, the asymmetric sponge has the same
symmetry as an ordinary liquid. The symmetric sponge, however, does not: there is
additionally a discrete global symmetry between I and O. In the asymmetric sponge
phase, this Ising-like symmetry is spontaneously broken (Huse & Leibler 1988 ; Cates
et al. 1988; Roux et al. 1990).

The extra symmetry of the sponge phase has some important consequences. It
permits in principle the existence of a line of second-order phase transitions in the
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composition/temperature plane of a binary fluid, rather than an isolated critical
point as would be normal in such a fluid. There is also a generic tendency toward
tricritical (or even higher order) behaviour, with associated regions of parameter
space where the transition is first order. Experimentally, first order transitions from
the symmetric to an asymmetric phase have definitely been found (Roux et al. 1990;
Porte et al. 1988), as has (in at least one system) a clear turbidity signature
(accompanied by apparently divergent light scattering) which is consistent with a
line of continuous phase transitions (Coulon et al. 1991). The experiments also show
some evidence of tricriticality in certain aqueous sponge systems (Roux et al. 1991).

These phenomena can be studied using a Landau expansion of the thermodynamic
potential in terms of two interacting order parameters, p and 5. Here p represents the
surfactant density, and 5 the degree of asymmetry. A suitable form is (Roux et al.
1991

) AD = pp+ Ap*+ap® + fy*+ 0t + vpy?, (15)
where A, «, f, § and v are expansion coefficients. The surfactant density p is measured
relative to a reference value, chosen to eliminate any p® term. The physical content
of the Landau expansion is that of a binary-fluid order parameter (p) coupled to an
Ising like I/O variable (y) by a py* term (this is the lowest order permitted by
symmetry). From (15) a number of generic predictions can be obtained concerning
phase diagrams, tricriticality, etc., which seem to be generally consistent with
observations (Roux et al. 1991).

The special I/O symmetry of the sponge phase leads to a very distinctive signature
in light-scattering, which probes the correlations of the surfactant density, p. This is
coupled quadratically to 4 (see (15)). The scattering signal can be calculated at the
level of gaussian fluctuations in %, and for the simplest nontrivial model reduces to
the form
arctan (¢§,)

%,

where § is the correlation length for 4 fluctuations (Roux et al. 1990). This scattering
function has been clearly observed in several different systems (Roux et al. 1990;
Porte et al. 1991), though more complicated functions are sometimes needed, for
example in symmetric sponges close to tricriticality, and in asymmetric sponges
(Roux et al. 1991).

1(q) ~ const. + ) (16)

(e) Role of defects

So far we have assumed that the bilayer in the sponge phase is free of edge and
seam defects. In fact the line energy for such defects is not infinite, so they must be
present. An important question is whether a small concentration of such defects
invalidates the conclusions of our previous discussion. The presence of edges or seams
prevents any unique assignment of I and O regions; this might lead, for example, to
rounding of any second order transition.

The problem has been studied by Huse & Leibler (1991). These authors used a
lattice model which could be written as a gauge theory. They argued on this basis
that there was in fact no rounding of the transition until the line energy for defects
was so low that infinite line defects were present on the percolating bilayer. This
suggests that our simpler description in terms of I/O symmetry remains basically
reliable unless the line energy for defects is rather small. In this régime, a transition
to a new ‘seaweed’ phase, with the same symmetry as an asymmetric sponge (or an
ordinary liquid) was argued to occur (Huse & Leibler 1991); the experimental
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confirmation of this idea remains a matter of some uncertainty (Porte & Pfeuty
1993).

(f) Dynamics in bilayer-continuous phases

Theoretically it is not obvious whether the sponge phase, which contains a
percolating film of continuous bilayer, should exhibit significant viscoelasticity. On
the one hand, the bilayer film is fluid, and this allows transport of surfactant from
place to place without rupture or topological change in the film (Snabre & Porte
1990). On the other hand, one might argue that topological features, such as handles,
cannot be mutually rearranged without rupture and reconnection of the film (Milner
et al. 1990). The latter is presumably an activated process which could have a long
relaxation time. Experimentally, the situation seems fairly clear: there is negligible
viscoelasticity (Snabre & Porte 1990; see also Hoffmann et al. 1992).

None the less, the sponge phase has some interesting flow behaviour. For example,
in the symmetric sponge, the viscosity is higher by a factor of 3 or so than that of
pure solvent. This factor, which remains even if one extrapolates to zero volume
fraction, can be explained in terms of an effective ‘tortuosity’ of local fluid
streamlines (Snabre & Porte 1990). The connectivity of the sponge is also exhibited
if one tries to pump it through a porous medium (Vinches et al. 1992). The strong flow
birefringence of the sponge phase has already been mentioned. Indeed, in some
systems gentle shearing of the phase in a test tube seems to lead to the formation of
a metastable lamellar liquid crystal (see Hoffmann et al. 1992). This persists for
seconds or (in some cases) very much longer. A theoretical study of the effect of shear
on the isotropic to lamellar transition offers a qualitative explanation of this effect
(Cates & Milner 1989; Cates 1991), though the details of what happens under
controlled laminar flow conditions may be much more complex (Diat & Roux 1993).

Recent temperature jump measurements on sponge phases show a very rich
multimode response spectrum (Waton & Porte 1993). An unusual relaxation
spectrum has also been predicted for dynamic light scattering in sponge phases near
the symmetry breaking transition (Granek et al. 1992). Anomalies can also be
expected in other aspects of sponge phase dynamics, though most of these remain to
be investigated in detail.

(9) Vesicles and onions

The arguments of Porte et al. (1989, 1991) involve stabilising a sponge phase with
many handles by increasing the gaussian rigidity & to a less negative value (see §5a).
It is interesting to ask what happens if instead & is decreased towards its stability
limit of € = — 2«. (When this limit is reached, the bending energy for creating a small
sphere is negative and hence one expects proliferation of very small vesicles whose
size is limited only by anharmonic corrections to (11).)

The combination of elastic constants which controls the energy of a sphere is «” =
2« +k&; as usual this is logarithmically dependent on the length scale £. If the bare
value of « is slightly positive, there is no instability at short distances but (because
of the renormalization effect) x'(£) could none the less be negative at large length
scales, leading to a proliferation of spheres of an intermediate size. Such a vesicle
phase could also be stabilized, relative to the lamellar state, by translational entropy
terms (Huse & Leibler 1988). There is now good evidence that an isotropic phase of
large (ca. 30 nm) vesicles does arise in some systems (Herve & Roux 1993; Hoffmann
et al. 1992), if one varies the bilayer composition in the opposite direction from the
sponge phase.
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The properties of this ‘L,’ phase are particularly interesting in the semidilute
regime (more than 2-3%). Here spherical unilamellar vesicles, if present, would
overlap, and theoretical arguments (Simons & Cates 1992) suggest that ‘nesting’ of
vesicles, should occur to form a phase of onion-like aggregates. This seems to be
consistent with some experimental data from light scattering and conductivity
studies (Herve & Roux 1993). However, detailed experiments on the semidilute L,
phase have so far proved difficult, partly because any phase separation involving the
nearby lamellar phase is extremely slow. The L, phase is viscoelastic; details of its
behaviour remain to be explored. Somewhat similar viscoelastic phases, containing
larger multilamellar vesicles, can also be formed by the ultrasonification or (with
much better control of aggregate size) careful shearing of a dilute lamellar phase
(Diat & Roux 1993). These long-lived metastable states pose many important
challenges for future research.

6. Concluding remarks

Recent work on isotropic phases of self-assembled structured fluids has been
reviewed. The emphasis has been on areas where significant understanding has been
gained (as judged by the convergence of theoretical and experimental results). But
it would be wrong to conclude that all was settled even in these limited areas: many
minor (and several major) discrepancies between theory and experiment have been
glossed over. For reasons of space, very little detail has been given on the main
experimental results and how they were obtained. This belies the fact that recent
progress in this area has generally been marked by an unusually strong interplay
between theoretical and experimental studies, a trend which seems likely to
continue.

I thank my colleagues especially D. Roux and S.J. Candau (but also others too numerous to
mention individually), for discussions that have contributed, directly or indirectly, to the
preparation of this article.
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